Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631120

RESUMO

Plant extracts are a valuable alternative for the control of phytopathogenic fungi in horticultural crops. In the present work, the in vitro antifungal effect of ethanol and aqueous extracts from different vegetative parts of 40 native plants of the Yucatan Peninsula on Curvularia lunata ITC26, a pathogen of habanero pepper (Capsicum chinense), and effects of the most active extracts on postharvest fruits were investigated. Among these, the ethanol extracts of Mosannona depressa (bark from stems and roots) and Piper neesianum (leaves) inhibited 100% of the mycelial growth of C. lunata. The three extracts were partitioned between acetonitrile and n-hexane. The acetonitrile fraction from M. depressa stem bark showed the lowest mean inhibitory concentration (IC50) of 188 µg/mL against C. lunata. The application of this extract and its active principle α-asarone in the postharvest fruits of C. chinense (500 µg/mL) was shown to inhibit 100% of the severity of the infection caused by C. lunata after 11 days of contact. Both samples caused the distortion and collapse of the conidia of the phytopathogen when observed using electron microscopy at 96 h. The spectrum of M. depressa enriched antifungal action is a potential candidate to be a botanical fungicide in the control of C. lunata in cultivating habanero pepper.

2.
BMC Plant Biol ; 23(1): 389, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563545

RESUMO

BACKGROUND: Anthracnose is a fungal disease caused by Colletotrichum spp. that has a significant impact on worldwide pepper production. Colletotrichum scovillei is the most common pathogenic anthracnose-causing species in the Republic of Korea. RESULTS: The resistances of 197 pepper (Capsicum chinense) accessions deposited in Korea's National Agrobiodiversity Center were evaluated for their response against the virulent pathogens Colletotrichum acutatum isolate 'KSCa-1' and C. scovillei isolate 'Hana') in the field and in vitro methods for three consecutive years (2018 to 2020). The severity of the disease was recorded and compared between inoculation methods. Six phenotypically resistant pepper accessions were selected based on three years of disease data. All of the selected resistant pepper accessions outperformed the control resistant pepper in terms of resistance (PI 594,137). A genome-wide association study (GWAS) was carried out to identify single nucleotide polymorphisms (SNPs) associated with anthracnose resistance. An association analysis was performed using 53,518 SNPs and the disease score of the 2020 field and in vitro experiment results. Both field and in vitro experiments revealed 25 and 32 significantly associated SNPs, respectively. These SNPs were found on all chromosomes except Ch06 and Ch07 in the field experiment, whereas in the in vitro experiment they were found on all chromosomes except Ch04 and Ch11. CONCLUSION: In this study, six resistant C. chinense accessions were selected. Additionally, in this study, significantly associated SNPs were found in a gene that codes for a protein kinase receptor, such as serine/threonine-protein kinase, and other genes that are known to be involved in disease resistance. This may strengthen the role of these genes in the development of anthracnose resistance in Capsicum spp. As a result, the SNPs discovered to be strongly linked in this study can be used to identify a potential marker for selecting pepper material resistant to anthracnose, which will assist in the development of resistant varieties.


Assuntos
Capsicum , Colletotrichum , Estudo de Associação Genômica Ampla , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511147

RESUMO

Pepper is renowned worldwide for its distinctive spicy flavor. While the gene expression characteristics of the capsaicinoid biosynthesis pathway have been extensively studied, there are already a few reports regarding transcriptional regulation in capsaicin biosynthesis. In this study, 73 WRKYs were identified in the genome of Capsicum chinense, and their physicochemical traits, DNA, and protein sequence characteristics were found to be complex. Combining RNA-seq and qRT-PCR data, the WRKY transcription factor CA06g13580, which was associated with the accumulation tendency of capsaicinoid, was screened and named CcWRKY25. CcWRKY25 was highly expressed in the placenta of spicy peppers. The heterologous expression of CcWRKY25 in Arabidopsis promoted the expression of genes PAL, 4CL1, 4CL2, 4CL3, CCR, and CCoAOMT and led to the accumulation of lignin and flavonoids. Furthermore, the expression of the capsaicinoid biosynthesis pathway genes (CBGs) pAMT, AT3, and KAS was significantly reduced in CcWRKY25-silenced pepper plants, resulting in a decrease in the amount of capsaicin. However, there was no noticeable difference in lignin accumulation. The findings suggested that CcWRKY25 could be involved in regulating capsaicinoid synthesis by promoting the expression of genes upstream of the phenylpropanoid pathway and inhibiting CBGs' expression. Moreover, the results highlighted the role of CcWRKY25 in controlling the pungency of pepper and suggested that the competitive relationship between lignin and capsaicin could also regulate the spiciness of the pepper.


Assuntos
Capsicum , Capsicum/metabolismo , Capsaicina/metabolismo , Lignina/metabolismo , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
PeerJ ; 11: e15521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366425

RESUMO

Capsicum chinense Jacq. (ghost pepper), a naturally occurring chili species of Northeast India is known throughout the world for its high pungency and a pleasant aroma. The economic importance is due to the high capsaicinoid levels, the main source for pharmaceutical industries. The present study focused on identifying important traits necessary for increasing the yield and pungency of ghost pepper and to determine the parameters for the selection of superior genotypes. A total of 120 genotypes with more than 1.2% capsaicin content (>1,92,000 Scoville Heat Unit, w/w on dry weight basis) collected from different northeast Indian regions were subjected to variability, divergence and correlation studies. Levene's homogeneity test of variance studied for three environments did not show significant deviation and so homogeneity of variance was reasonably met for analysis of variance study. Genotypic and phenotypic coefficient of variation was highest for fruit yield per plant (33.702, 36.200, respectively), followed by number of fruits per plant (29.583, 33.014, respectively) and capsaicin content (25.283, 26.362, respectively). The trait number of fruits per plant had maximum direct contribution to fruit yield per plant and the trait fruit yield per plant towards capsaicin content in the correlation study. High heritability with high genetic advance, which is the most favored selection criteria was observed for fruit yield per plant, number of fruits per plant, capsaicin content, fruit length and fruit girth. The genetic divergence study partitioned the genotypes into 20 clusters, where fruit yield per plant contributed maximum towards total divergence. Principal components analysis (PCA) studied to determine the largest contributor of variation showed 73.48% of the total variability, of which the PC1 and PC2 contributed 34.59% and 16.81% respectively.


Assuntos
Capsaicina , Capsicum , Capsaicina/análise , Capsicum/genética , Frutas/genética , Índia , Variação Genética/genética
5.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297351

RESUMO

Pepper (Capsicum spp.) is among the oldest and most cultivated crops on the planet. Its fruits are widely used as natural condiments in the food industry for their color, flavor, and pungency properties. Peppers have abundant production; on the other hand, their fruits are perishable, deteriorating within a few days after harvesting. Therefore, they need adequate conservation methods to increase their useful life. This study aimed to mathematically model the drying kinetics of smelling peppers (Capsicum chinense) and pout peppers (Capsicum chinense Jacq.) to obtain the thermodynamic properties involved in the process and to determine the influence of drying on the proximal composition of these peppers. Whole peppers, containing the seeds, were dried in an oven with forced air circulation, at temperatures of 50, 60, 70, and 80 °C, with an air speed of 1.0 m/s. Ten models were adjusted to the experimental data, but the Midilli model was the one that provided the best values of coefficient of determination and lowest values of the mean squared deviation and chi-square value in most of the temperatures under study. The effective diffusivities were well represented by an Arrhenius equation, appearing in the order of 10-10 m2·s-1 for both materials under study, since the activation energy of the smelling pepper was 31.01 kJ·mol-1 and was 30.11 kJ·mol-1 in the pout pepper, respectively. Thermodynamic properties in both processes of drying the peppers pointed to a non-spontaneous process, with positive values of enthalpy and Gibbs free energy and negative values of entropy. Regarding the influence of drying on the proximal composition, it was observed that, with the increase in temperature, there was a decrease in the water content and the concentration of macronutrients (lipids, proteins, and carbohydrates), providing an increase in the energy value. The powders obtained in the study were presented as an alternative for the technological and industrial use of peppers, favoring obtaining a new condiment, rich in bioactives, providing the market with a new option of powdered product that can be consumed directly and even adopted by the industry as a raw material in the preparation of mixed seasonings and in the formulation of various food products.

6.
Physiol Mol Biol Plants ; 29(3): 393-407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033763

RESUMO

Hot chilli ('Bhut Jolokia') (Capsicum chinense Jacq.) is the hottest chilli widely grown in the North-Eastern region of India for its high pungency. However, little information is available on its physiology, growth and developmental parameters including yield. Therefore, the present research was undertaken to study the physiological responses of Bhut Jolokia under elevated CO2 (eCO2) and temperature. Two germplasms from two different agro-climatic zones (Assam and Manipur) within the North-East region of India were collected based on the pungency. The present study explored the interactive effect of eCO2 [at 380, 550, 750 ppm (parts per million)] and temperature (at ambient, > 2 °C above ambient, and > 4 °C above ambient) on various physiological processes, and expression of some photosynthesis and capsaicin related genes in both the germplasms. Results revealed an increase (> 1-2 fold) in the net photosynthetic rate (Pn), carbohydrate content, and C: N ratio in 'Bhut Jolokia' under eCO2 and elevated temperature regimes compared to ambient conditions within the germplasms. Gene expression studies revealed an up-regulation of photosynthesis-related genes such as Cs RuBPC2 (Ribulose biphosphate carboxylase 2) and Cs SPS (Sucrose phosphate synthase) which, explained the higher Pn under eCO2 and temperature conditions. Both the germplasm showed better performance under CTGT-II (Carbon dioxide Temperature Gradient Tunnel having 550 ppm CO2 and temperature of 2 °C above ambient) in terms of various physiological parameters and up-regulation of key photosynthesis-related genes. An up-regulation of the Cs  capsaicin synthase gene was also evident in the study, which could be due to the metabolite readjustment in 'Bhut Jolokia'. In addition, the cultivar from Manipur (cv. 1) had less fruit drop compared to the cultivar from Assam (cv. 2) in CTGT II. The data indicated that 550 ppm of eCO2 and temperature elevation of > 2 °C above the ambient with CTGT-II favored the growth and development of 'Bhut Jolokia'. Thus, results suggest that Bhut Jolokia grown under the elevation of CO2 up to 550 ppm and temperature above 2 °C than ambient may support the growth, development, and yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01294-9.

7.
Foods ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36832982

RESUMO

Capsaicinoids are pungent alkaloid compounds enriched with antioxidants, anti-microbial, anti-inflammatory, analgesics, anti-carcinogenic, anti-obesity and anti-diabetic properties. These compounds are primarily synthesised in the placenta of the fruit and then transported to other vegetative parts. Different varieties of capsicum and chillies contain different capsaicinoid concentrations. As capsicums and chillies are grown extensively throughout the world, their agricultural and horticultural production leads to significant amount of waste generation, in the form of fruits and plant biomass. Fruit wastes (placenta, seeds and unused fruits) and plant biowaste (stems and leaves) can serve as sources of capsaicinoids which can provide opportunities to extract these compounds for development of nutraceutical products using conventional or advanced extraction techniques. Capsaicin and dihydrocapsaicin are two most abundantly found pungent compounds. Considering the health benefits of capsaicinoids, these compounds can help in reducing metabolic disease complications. The development of an advanced encapsulation therapy of safe and clinically effective oral capsaicinoid/capsaicin formulation seem to require evaluation of strategies to address challenges related to the dosage, limited half-life and bioavailability, adverse effects and pungency, and the impacts of other ligands antagonising the major capsaicinoid receptor.

8.
Front Plant Sci ; 13: 1025497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466290

RESUMO

Regeneration is extremely important to pepper genetic development; however, the molecular mechanisms of how the callus reactivates cell proliferation and promotes cell reprogramming remain elusive in pepper. In the present study, C. baccatum (HNUCB81 and HNUCB226) and C. chinense (HNUCC22 and HNUCC16) were analyzed to reveal callus initiation by in vitro regeneration, histology, and transcriptome. We successfully established an efficient in vitro regeneration system of two cultivars to monitor the callus induction of differential genotypes, and the regenerated plants were obtained. Compared to C. chinense, there was a higher callus induction rate in C. baccatum. The phenotype of C. baccatum changed significantly and formed vascular tissue faster than C. chinense. The KEGG enrichment analysis found that plant hormone transduction and starch and sucrose metabolism pathways were significantly enriched. In addition, we identified that the WOX7 gene was significantly up-regulated in HNUCB81 and HNUCB226 than that in HNUCC22 and HNUCC16, which may be a potential function in callus formation. These results provided a promising strategy to improve the regeneration and transformation of pepper plants.

9.
Foods ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429209

RESUMO

Habanero pepper is recognized for its appealing aroma and flavor. Lactic acid fermentation can improve these sensory properties, especially aroma, by the synthesis of volatile compounds, which might also increase the consumer preference. Thus, the aim of this research was to compare the volatile composition as well as different sensory parameters such as preference and emotions related to the lactic acid fermentation of Habanero pepper by two strains (wild and commercial) of Lactiplantibacillus plantarum. A multiple factor ANOVA was used to compare the volatile composition with different fermentation times and strains. The results demonstrated that the interaction between the strain and fermentation time had significant effects on the volatile compound production that includes 1-hexanol, cis-3-hexenyl hexanoate, linalool, and 3,3 dimethyl-1-hexanol while only time influenced the production of trans-2-hexen-1-al. The wild strain (WIL) at 48 h of fermentation produced the highest concentration of 3,3 dimethyl-1-hexanol and trans-2-hexen-1-al. On the other hand, the commercial strain (COM) presented the highest concentration of 1-hexanol and cis-3-hexenyl hexanoate with a 72 h fermentation. The most preferred sample was that fermented by WIL for 48 h for the attribute of odor, while for taste, the most preferred sample was that fermented for 72 h with COM.

10.
Genes (Basel) ; 13(11)2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36360285

RESUMO

MADS domain transcription factors play roles throughout the whole lifecycle of plants from seeding to flowering and fruit-bearing. However, systematic research into MADS-box genes of the economically important vegetable crop pepper (Capsicum spp.) is still lacking. We identified 174, 207, and 72 MADS-box genes from the genomes of C. annuum, C. baccatum, and C. chinense, respectively. These 453 MADS-box genes were divided into type I (Mα, Mß, Mγ) and type II (MIKC* and MIKCC) based on their phylogenetic relationships. Collinearity analysis identified 144 paralogous genes and 195 orthologous genes in the three Capsicum species, and 70, 114, and 10 MADS-box genes specific to C. annuum, C. baccatum, and C. chinense, respectively. Comparative genomic analysis highlighted functional differentiation among homologous MADS-box genes during pepper evolution. Tissue expression analysis revealed three main expression patterns: highly expressed in roots, stems, leaves, and flowers (CaMADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically expressed in flowers (CaMADS26/CbMADS31/CcMADS11). Protein interaction network analysis showed that type II CaMADS mainly interacted with proteins related to flowering pathway and flower organ development. This study provides the basis for an in-depth study of the evolutionary features and biological functions of pepper MADS-box genes.


Assuntos
Capsicum , Proteínas de Domínio MADS , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Capsicum/genética , Filogenia , Genoma de Planta , Regulação da Expressão Gênica de Plantas/genética , Evolução Molecular , Verduras/genética , Verduras/metabolismo
11.
Antibiotics (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36139934

RESUMO

Bacterial, fungal, and parasitic infections increase morbimortality rates and hospital costs. This study aimed to assess the antimicrobial and antiparasitic activities of the crude extract from the seeds and peel of the pepper Capsicum chinense Jacq. and of the isolated compound capsaicin and to evaluate their ability to inhibit biofilm formation, eradicate biofilm, and reduce hemolysin production by Candida species. The crude ethanolic and hexane extracts were obtained by maceration at room temperature, and their chemical compositions were analyzed by liquid chromatography coupled to mass spectrometry (LC-MS). The antimicrobial activity of the samples was evaluated by determining the minimum inhibitory concentration. Inhibition of biofilm formation and biofilm eradication by the samples were evaluated based on biomass and cell viability. Reduction of Candida spp. hemolytic activity by the samples was determined on sheep blood agar plates. The antiparasitic action of the samples was evaluated by determining their ability to inhibit Toxoplasma gondii intracellular proliferation. LC-MS-ESI analyses helped to identify organic and phenolic acids, flavonoids, capsaicinoids, and fatty acids in the ethanolic extracts, as well as capsaicinoids and fatty acids in the hexane extracts. Antifungal action was more evident against C. glabrata and C. tropicalis. The samples inhibited biofilm formation and eradicated the biofilm formed by C. tropicalis more effectively. Sub-inhibitory concentrations of the samples significantly reduced the C. glabrata and C. tropicalis hemolytic activity. The samples only altered host cell viability when tested at higher concentrations; however, at non-toxic concentrations, they reduced T. gondii growth. In association with gold standard drugs used to treat toxoplasmosis, capsaicin improved their antiparasitic activity. These results are unprecedented and encouraging, indicating the Capsicum chinense Jacq. peel and seed extracts and capsaicin display antifungal and antiparasitic activities.

12.
Plants (Basel) ; 11(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956538

RESUMO

Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 ± 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising "green" extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products.

13.
Antibiotics (Basel) ; 11(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35625310

RESUMO

Salmonella typhimurium (S. typhimurium) is one of the major food and waterborne bacteria that causes several health outbreaks in the world. Although there are few antibiotics against this bacterium, some of these drugs are challenged with resistance and toxicity. To mitigate this challenge, our group explored the ethnomedicinal/herbalism knowledge about a certain spice used in Northern Ghana in West Africa against bacterial and viral infection. This plant is Capsicum chinense (C. chinense). The plant is one of the commonest food spices consumed across the world. The seed of the plant contains both capsaicin and dihydrocapsaicin. Apart from capsaicin and dihydrocapsaicin, other major capsaicinoids in C. chinense include nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin. In this pilot work, we investigated the antibacterial activity of pure capsaicin and capsaicin extract obtained from C. chinense against S. typhimurium in vitro. Capsaicin extract showed potent inhibition of S. typhimurium growth at concentrations as low as 100 ng/mL, whereas pure capsaicin comparatively showed poorer inhibition of bacteria growth at such a concentration. Interestingly, both capsaicin extract and pure capsaicin were found to potently block a S. typhimurium invasion of the Vero cell in vitro. Taken together, we believed that capsaicin might work synergistically with dihydrocapsaicin or the other capsaicinoids to inhibit S. typhimurium growth, whereas individually, capsaicin or dihydrocapsaicin could potently block the bacteria entry and invasion of Vero cells.

14.
J Environ Sci Health B ; 57(5): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392762

RESUMO

Several aflatoxin inhibitors can modulate the antioxidant system in fungi. In this work, the effect of the ethanolic extract of Capsicum chinense and Piper nigrum fruits, capsaicin, and piperine on the expression of the aflE, aflG, aflH, aflI, aflK, aflL, aflO, aflP, and aflQ genes involved in the aflatoxin biosynthetic pathway in Aspergillus parasiticus were studied by qRT-PCR analysis. As well as, the effect on the expression of fungal antioxidant genes (sod1, catA, and cat2) and enzymatic activity of catalase (CAT) and superoxide dismutase (SOD). Results reveal that the highest (p < 0.05) radial growth inhibition (68 and 86%) and aflatoxins production inhibition (73 and 80%) was observed with capsaicin and piperine respectively, at 300 µg/mL, instead of the ethanolic extract at the same concentration. The qRT-PCR analysis showed that compounds and extracts at 300 µg/mL induced a down-regulation of aflatoxin genes and an up-regulation on the fungal antioxidant genes. CAT activity increased by 23.15, 36.65, 51.40, and 65.50%, in the presence of C. chinense and P. nigrum extract, capsaicin, and piperine exposure, respectively. While SOD activity was not significantly impacted (p > 0.05). In conclusion, the capsaicin and piperine, two antifungal and anti-aflatoxigenic compounds produce an up-regulation of antioxidant defense genes accompanied by an enhancement of catalase enzymatic activity in A. parasiticus.


Assuntos
Aflatoxinas , Capsicum , Piper nigrum , Aflatoxinas/análise , Alcaloides , Antioxidantes/farmacologia , Aspergillus , Benzodioxóis , Capsaicina/farmacologia , Catalase/genética , Frutas/química , Piperidinas , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas , Superóxido Dismutase/genética
15.
Nat Prod Res ; 36(21): 5638-5642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34937448

RESUMO

The present study determined the capsaicin, dihydrocapsaicin and nordihydrocapsaicin of Capsicum chinense Jacq., ethanol, methanol, acetonitrile and dry acetone extracts using ultra high-performance liquid chromatography (uHPLC) technique. Highest capsaicin (2.84%) and nordihydrocapsaicin (0.56%) content was recorded in ethanol extract, while methanol extracts constituted highest dihydrocapsaicin (1.27%). Strong anti-inflammatory activity was shown by ethanol extract. All the extracts were found to be weak anti-diabetic, skin whitening and neurodegenerative agent. In genotoxicity test, ethanol extract showed mitotic index (MI) of 13.16% which was close to distilled water 25.72%. The chromosomal aberration of 8.0% was shown by ethanolic extract. The mitotic index value and chromosome aberration percentages of all the four extracts were similar but far from positive mutagenic agent ethyl methane sulfonate. Ethanol extract proved to be the best solvent for capsaicinoids extraction in comparison to the other three solvents and emerged as a potential pharmacological candidate having excellent anti-inflammatory ability.


Assuntos
Capsicum , Capsicum/química , Capsaicina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Metanol , Solventes , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Etanol
16.
Food Chem ; 375: 131850, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953242

RESUMO

Fruit pungency is caused by the accumulation of capsaicinoids, secondary metabolites whose relation to primary metabolism remains unclear. We have selected ten geographically diverse accessions of Capsicum chinense Jacq with different pungency levels. A detailed metabolic profile was conducted in the fruit placenta and pericarp at 20, 45, and 60 days after anthesis aiming at increasing our understanding of the metabolic changes in these tissues across fruit development and their potential connection to capsaicin metabolism. Overall, despite the variation in fruit pungency among the ten accessions, the composition and metabolite levels in both placenta and pericarp were uniformly stable across accessions. Most of the metabolite variability occurred between the fruit developmental stages rather than among the accessions. Interestingly, different metabolite adjustments in the placenta were observed among pungent and non-pungent accessions, which seem to be related to differences in the genetic background. Furthermore, we observed high coordination between metabolites and capsaicin production in C. chinense fruits, suggesting that pungency in placenta is adjusted with primary metabolism.


Assuntos
Capsicum , Piper nigrum , Capsaicina/análise , Frutas/química , Reprodução
17.
Front Plant Sci ; 12: 721265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721453

RESUMO

Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.

18.
Ultrason Sonochem ; 76: 105658, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242865

RESUMO

Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g-1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with "ε" values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the "ε" of the solvents for future metabolomic studies.


Assuntos
Antioxidantes/isolamento & purificação , Capsicum/química , Fracionamento Químico/métodos , Fenóis/isolamento & purificação , Folhas de Planta/química , Solventes/química , Ondas Ultrassônicas , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Fenóis/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
Electron. j. biotechnol ; 52: 76-84, July. 2021. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1283597

RESUMO

BACKGROUND: Butyrate is a histone deacetylase inhibitor that induces apoptosis and inhibits cell proliferation of colorectal cancer cells. To improve its anticancer activity, butyrate has been evaluated mixed with drugs and different molecules. Plant antimicrobial peptides are attractive anticancer alternative molecules because they show selective cytotoxic activity against different cancer cell lines. In this work, we explore if the plant defensin c-thionin (Capsicum chinense) can improve butyrate activity on Caco-2 cell line and we also determined the mechanism of death activated. RESULTS: The combined treatment of c-thionin (3.5 mM) and butyrate (50 mM) showed higher cytotoxicity on Caco-2 cells with respect to single treatments. Also, the combined treatment reduced cell proliferation and exhibited a higher rate of apoptosis than single treatments. Combined treatment induced caspases 8 and 9 activation to an extent comparable with that of butyrate while c-thionin did not activate caspases. Additionally, reactive oxygen species generation preceded the onset of apoptosis, and superoxide anion production was higher in cells treated with the combined treatment. CONCLUSIONS: The c-thionin from Habanero chili pepper improved the butyrate cytotoxicity on Caco-2 cells. This effect occurred through apoptosis induction associated with reactive oxygen species production. Therefore, the combination of butyrate with cytotoxic antimicrobial peptides could be an attractive strategy for cancer therapy.


Assuntos
Humanos , Butiratos , Capsicum/química , Adenocarcinoma , Neoplasias do Colo , Ciclo Celular , Espécies Reativas de Oxigênio , Apoptose , Células CACO-2 , Defensinas , Tioninas
20.
J Plant Physiol ; 258-259: 153333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581559

RESUMO

Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.


Assuntos
Capsicum/embriologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/embriologia , Zigoto/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...